On the Relationship Between Feature Selection and Classification Accuracy

نویسندگان

  • Andreas Janecek
  • Wilfried N. Gansterer
  • Michael Demel
  • Gerhard F. Ecker
چکیده

Dimensionality reduction and feature subset selection are two techniques for reducing the attribute space of a feature set, which is an important component of both supervised and unsupervised classification or regression problems. While in feature subset selection a subset of the original attributes is extracted, dimensionality reduction in general produces linear combinations of the original attribute set. In this paper we investigate the relationship between several attribute space reduction techniques and the resulting classification accuracy for two very different application areas. On the one hand, we consider e-mail filtering, where the feature space contains various properties of e-mail messages, and on the other hand, we consider drug discovery problems, where quantitative representations of molecular structures are encoded in terms of information-preserving descriptor values. Subsets of the original attributes constructed by filter and wrapper techniques as well as subsets of linear combinations of the original attributes constructed by three different variants of the principle component analysis (PCA) are compared in terms of the classification performance achieved with various machine learning algorithms as well as in terms of runtime performance. We successively reduce the size of the attribute sets and investigate the changes in the classification results. Moreover, we explore the relationship between the variance captured in the linear combinations within PCA and the resulting classification accuracy. The results show that the classification accuracy based on PCA is highly sensitive to the type of data and that the variance captured the principal components is not necessarily a vital indicator for the classification performance. c ©2008 Janecek et al.. On the Relationship Between Feature Selection and Classification Accuracy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008